因子图是用于代表机器人技术各种问题的图形模型,例如运动(SFM),同时定位和映射(SLAM)和校准。通常,在他们的核心上,他们有一个优化问题,其术语仅取决于一小部分变量。因子图解决器利用问题的局部性,以大大减少迭代最小二乘(ILS)方法的计算时间。尽管非常强大,但他们的应用通常仅限于无约束的问题。在本文中,我们通过引入Lagrange乘数方法的因子图版本来对因子图内的变量进行建模。我们通过根据因子图提供完整的导航堆栈来显示我们方法的潜力。与标准导航堆栈不同,我们可以使用因子图对本地规划和本地化的最佳控制建模,并使用标准ILS方法来解决这两个问题。我们在现实世界自主导航方案中验证了我们的方法,并将其与ROS中实现的事实上的标准导航堆栈进行了比较。比较实验表明,对于手头的应用程序,我们的系统优于运行时的标准非线性编程求解器内部优化器(IPOPT),同时实现了类似的解决方案。
translated by 谷歌翻译
姿势图优化是在机器人感知的许多领域遇到的非凸优化问题。它的收敛到准确的解决方案由两个因素来调节:使用成本函数的非线性和姿势变量的初始配置。在本文中,我们提出了Hipe,这是一种用于姿势图初始化的新型分层算法。我们的方法利用了一个粗粒图,该图编码了问题几何形状的抽象表示。我们通过结合来自输入本地区域的最大似然估计来构建此图。通过利用这种表示的稀疏性,我们可以以非线性方式初始化姿势图,而无需与现有方法相比,没有计算开销。最终的初始猜测可以有效地引导用于获得最终解决方案的细粒优化。此外,我们对不同成本函数对最终估计的影响进行了经验分析。我们的实验评估表明,HIPE的使用导致更有效,更健壮的优化过程,与最先进的方法相比。
translated by 谷歌翻译
在给定地图中的强大定位是大多数自主机器人的关键组成部分。在本文中,我们解决了在室内环境中定位的问题,该问题在室内环境中发生了变化,而突出结构在不同时间点构建的地图中没有对应关系的问题。为了克服地图与由于这种变化引起的观察到的环境之间的差异,我们利用了人类可读的本地化提示来协助定位。这些提示很容易在大多数设施中获得,并且可以通过使用文本斑点来使用RGB摄像机图像来检测。我们使用在2D激光扫描和相机数据上运行的粒子过滤器将这些线索集成到蒙特卡洛本地化框架中。这样,我们为人类行走具有结构性变化和动态的环境提供了强大的本地化解决方案。我们在办公室环境中评估了有关多个挑战室内场景的本地化框架。实验表明,我们的方法对结构变化具有鲁棒性,并且可以在板载计算机上运行。我们(按照纸质接受)发布了方法的开源实现,该实现使用了现成的文本斑点,并用ROS包装器编写了C ++。
translated by 谷歌翻译
目前,用于网站分类的公开型号不提供嵌入式方法,并且对英语的语言有限。我们在92种语言中释放了一个以上的网站,其中包含来自Curlie的相对标签,这是最大的多语种蜂窝Web目录。 DataSet包含14个网站类别遍及语言。除此之外,我们介绍主页2VEC,这是一种机器学习的预训练模型,用于根据他们的主页以语言无话无方式对网站进行分类和嵌入网站。主页2VEC,由于其功能集(文本内容,元数据标记和视觉属性)以及自然语言表示的最新进展,是由设计无关的语言,可以生成嵌入式表示。我们显示主页2VEC正确对网站进行了分类,宏平均F1分数为0.90,具有稳定的性能,以及高资源语言。特征分析表明,即使使用有限的计算资源,也足以实现高性能的小节能。我们将公开可用的Cutated Curlie DataSet横跨语言,预先培训的主页2VEC模型和库。
translated by 谷歌翻译
Neural networks are prone to catastrophic forgetting when trained incrementally on different tasks. Popular incremental learning methods mitigate such forgetting by retaining a subset of previously seen samples and replaying them during the training on subsequent tasks. However, this is not always possible, e.g., due to data protection regulations. In such restricted scenarios, one can employ generative models to replay either artificial images or hidden features to a classifier. In this work, we propose Genifer (GENeratIve FEature-driven image Replay), where a generative model is trained to replay images that must induce the same hidden features as real samples when they are passed through the classifier. Our technique therefore incorporates the benefits of both image and feature replay, i.e.: (1) unlike conventional image replay, our generative model explicitly learns the distribution of features that are relevant for classification; (2) in contrast to feature replay, our entire classifier remains trainable; and (3) we can leverage image-space augmentations, which increase distillation performance while also mitigating overfitting during the training of the generative model. We show that Genifer substantially outperforms the previous state of the art for various settings on the CIFAR-100 and CUB-200 datasets.
translated by 谷歌翻译